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Abstract—The Deep Space One (DS1)
mission, scheduled to fly in 1998, will be the
first NASA spacecraft to feature an on-board
planner. The planner is part of an artificial
intelli gence based control architecture that
comprises the planner/scheduler, a plan
execution engine, and a model-based fault
diagnosis and reconfiguration engine. This
autonomy architecture reduces mission costs
and increases mission quality by enabling high-
level commanding, robust fault responses, and
opportunistic responses to serendipitous
events. This paper describes the on-board
planning and scheduling component of the
DS1 autonomy architecture.
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 1.  INTRODUCTION

NASA’s New Mill ennium Program (NMP)
strives to achieve a “virtual presence” in space
by deploying several spacecraft built “faster,
better, and cheaper” than traditional
spacecraft.  Spacecraft autonomy is a crucial
element in achieving this vision. It is expected
that autonomous spacecraft will reduce
mission operations costs by taking over many
of the operations that have typically been
performed on the ground, and will improve
mission quality by being more robust to
failures and more responsive to unexpected
opportunities than traditional spacecraft.

The first NMP mission—Deep Space One
(DS1), scheduled to launch in 1998—will
feature an autonomy architecture. The
centerpiece of this architecture is the Remote
Agent (RA), an artificial intelli gence based
control system. The RA is derived from the
NewMaap technology demonstration [1]. It



consists of three components: the
Planner/Scheduler (PS), the Executive (EXEC)
[2], and a model-based Mode Identification
and Recovery engine (MIR) [3]. This paper
describes the Planner/Scheduler component of
the Remote Agent.

The RA reduces mission costs and increases
mission quality in several ways. First, it
reduces mission costs by enabling high level
commanding. This is a function both of the
hierarchical nature of the RA architecture and
the abili ty to generate plans on-board. Instead
of painstakingly constructing detailed
command sequences as is required in
traditional missions, the ground can command
the spacecraft with a handful of high-level
goals.  Changes to the mission plan are easily
accommodated by changing the goals.
Transmission costs are also reduced, since
goals take less time to transmit than their
corresponding sequences.

Second, the RA reduces mission costs and
improves mission quality by providing robust
responses to failures that would normally
require ground intervention. The PS provides
responses that require the abili ty to look ahead
and deliberate about global interactions,
whereas the rest of the RA handles real-time
failures requiring only local reasoning but
quick reactions. The abili ty to respond both
deliberative and reactively to failures provides
far more robustness than traditional missions,
and permits substantial savings in ground-
operations resources that would otherwise be
devoted to failure response. It also allows for
lighter DSN (Deep Space Network the
network of antennas used for deep space
communication) coverage—roughly one pass
per week—since the spacecraft is less likely to
be idle for several days after a failure, waiting
for the ground to respond.

Finally, on-board planning can improve
mission quality by taking advantage of

fortuitous events, such as better than expected
resource consumption. The same process used
to “plan around” failures can be used to
generate new plans that take advantage of a
change in spacecraft state. This capabili ty is
important since it enables fundamentally new
planetary exploration missions where round-
trip light time does not allow effective joy-
sticking of the spacecraft from Earth.

Organization

The remainder of this paper is organized as
follows: the DS1 mission is described by way
of context in Section 2;  high level
commanding is discussed in Section 3, along
with examples of mission goals and
constraints; the PS is described in Section 4;
the goal prioritization and rejection
mechanisms are described in Section 5; and the
fault response mechanism is discussed in
Section 6 with examples from a DS1 fault
scenario; opportunistic responses to fortuitous
events are discussed in Section 7; and
conclusions appear in Section 8.

 2.  THE MISSION

In past missions, spacecraft have been fairly
large and expensive (e.g. the Cassini mission to
Saturn is budgeted for approx. $1 billi on) and
have used mostly older, established
technologies in favor of newer, riskier ones.
The spacecraft and the scientific data which it
was tasked with gathering were just too
valuable to risk. As a result, many of the newer
technologies have never had a chance to fly,
despite their potential advantages.

The objective of the New Mill ennium program
(NMP) is to develop new technologies and
processes that will allow spacecraft to be built
and flown “faster, better, and cheaper” than
traditional missions. The program validates
these technologies and processes by trying
them out on low-risk, low-cost validation
missions. There are six missions in the New



Mill ennium program, of which this one, Deep
Space One (DS1), is the first.

The primary objective of the NMP missions is
not to do  planetary science but to validate
new technologies in flight. The spacecraft are
relatively inexpensive (e.g. the DS1 Mission is
capped at $138.5 milli on) and although there is
a science component, its presence is primarily
to stress the technologies. This shift of
priorities allows the technologies to be
developed and validated without all the
constraints imposed by typical science
missions. If the new technologies prove
worthy, they will be used on future science
missions.

The nominal mission is to fly by Asteroid 3352
McAuliffe in January 1999, take a series of
images, and then to repeat the process in a
flyby for Comet West-Kohoutek-Ikemura in
June 2000. Since one of the goals of spacecraft
autonomy is to reduce ground operations
costs, there will be minimal ground support
and very light DSN coverage throughout the
mission, only one pass every two weeks.

DS1 has thirteen new technologies aboard.
During cruise, while the spacecraft is closing
with the first encounter target, validation
experiments will be performed on each of the
new technologies. Of these technologies, some
are mission critical. If they fail, the rest of the
mission will be seriously compromised or lost.
These mission critical technologies will be
validated by the demands of the mission itself
as well as by specific validation tests.

The Remote Agent (RA), as the control system
for the spacecraft, is a critical mission
technology. The RA consists of three
components: the Planner/Scheduler (PS), the
Executive (EXEC), and a model-based Mode
Identification and Recovery engine (MIR).

The PS receives a set of high-level mission
goals either directly from the ground or as part
of a pre-loaded mission profile, and generates
a plan—a set of synchronized procedures.
Once executed, these commands will achieve
the mission goals without violating resource,
temporal, or safety constraints. The EXEC
receives the commands and ensures the correct
dispatching of low-level commands to the real-
time device drivers. MIR monitors device
responses to commands, identifies possibly
faulty components and suggests recovery
actions to the EXEC.

Some of the other critical technologies are the
on-board optical navigator, the ion-propulsion
engine (IPS), and the Miniature Integrated
Camera Spectrometer (MICAS).

The on-board navigator determines the
spacecraft trajectory and position based on
images of the surrounding star field taken on a
regular basis (every few days during cruise,
and more often near encounter.) The images
are taken with the MICAS camera, a new
compact device with infrared (IR), ultraviolet
(UV), and visible light sensors.

Unlike most missions where velocity is
accumulated with powerful chemical thrusters,
DS1 uses an ion propulsion engine (IPS) which
generates only a few milli newtons of force by
ejecting energized xenon particles. By
thrusting almost constantly, the required
velocity can be achieved more efficiently than
with chemical thrusters, albeit more slowly.
The IPS engine must be shut down every few
days to take images for optical navigation.
(Optical navigation requires pointing the
spacecraft at various target bodies. Doing this
while under thrust would introduce
unnecessary trajectory errors.)

Over several months the spacecraft closes with
the encounter target body (asteroid or comet)
and flies by at several kilometers per second,



taking a sequence of MICAS images as it does
so. During the last few days before encounter,
the trajectory is updated based on increasingly
frequent images of the target. The flyby itself
lasts perhaps 400 seconds, during which time
the spacecraft must take a tightly timed
sequence of images and make last minute
course corrections.

 3.  HIGH LEVEL COMMANDING

A Remote Agent controller that includes an
on-board PS enables a new approach to
spacecraft commanding,  high-level
commanding. In this approach, commands to a
spacecraft take the form of abstract directives
or goals instead of detailed streams of
instructions. The responsibili ties of PS are: (1)
to select among the proposed goals those to be
achieved at any point in time; (2) to
compromise between the level of achievement
of the selected goals, and (3) to expand the
procedures needed to achieve the goals. PS
ensures the satisfaction of various
synchronization constraints among procedures
and resolves resource conflicts. The set of
expanded procedures and constraints among
them constitutes a plan.

In contrast, the traditional approach to
spacecraft commanding is to develop a detailed
sequence of time-tagged commands to the
real-time device drivers. This extremely
detailed level of commanding allows a high
level of sequence optimization in order to
“squeeze” as much performance as possible
out of the spacecraft. However, the drawback
is that temporal and resource constraints and
fault protection goals also have to be ensured
at an extremely detailed level. The
consequence is that developing a sequence is a
very exacting and time consuming process,
often requiring months of manual labor. Once
generated, a sequence is very difficult to
modify.

The primary benefits of high-level commanding
when compared to traditional sequencing are
modularity, execution flexibili ty and
robustness.

With respect to modularity, in Remote Agent
the existence of an abstract plan makes very
explicit the hierarchical decomposition of
responsibili ties between the different
architectural components. This hierarchical
approach can greatly reduce the amount of
work needed to generate  sequences. The
procedures in a plan typically represent fairly
complex sequences of instructions to the real-
time device drivers. The expansion of this
sequence is achieved by EXEC and MIR on
the basis of the actual execution conditions.
Since the plan already resolves synchronization
and resource allocation constraints among
procedures,  the process of expanding an
EXEC/MIR sequence is highly localized and,
therefore, greatly simplified. Extensive
validation of these small sequences is much
simpler than the validation of sequences
generated in the traditional approach.
Localization of interactions among procedures
and flexibili ty of procedure expansion at
execution time has also the effect of making
plan execution more robust to failures. This is
discussed further in Section 6.

Execution flexibili ty depends on the fact that a
plan is not simply a time-tagged sequence of
commands. Procedures in a plan can be
potentially executed in parallel. The plan
explicitly represents and maintains temporal
constraints between procedures. These derive
either from the legal conditions under which
the spacecraft hardware can be operated or
from requests from ground operators. For
example, a temporal constraint can express
that procedure A must start from 30 to 60
minutes after procedure B, or that procedure B
must execute while procedure C is executing,
or that procedure A ends exactly when
procedure C starts. PS ensures the consistency



of the network of temporal constraints in the
plan and infers time ranges  during which a
procedure can start and end. Unlike simple
time tags, time ranges give EXEC the
flexibili ty to compensate for execution delays
caused by locally recoverable failures.

Relying on an on-board planner can also make
fault protection simpler and more robust than
traditional sequencing. In the traditional
approach, a sequence is infrequently uplinked
to a spacecraft and therefore needs to include
contingencies to handle a wide variety of
failure conditions. When a major failure
occurs, execution of the single on-board
sequence must be restarted, and the sequence
must command the assessment of the new
execution conditions and react conditionally on
the basis of this assessment. Because of the
large number of possible failure conditions and
the low level of the instructions in a sequence,
the size of a robust sequence can be very large
and the effort needed to build it very high.
Instead, plans are valid only for the execution
conditions known at the time PS was invoked.
For this reason, the sequences  eventually
expanded from a plan are generally simpler and
smaller. Fault protection goals, however, need
not be compromised. When execution
conditions differ so much  from the initial
assumptions that local failure recovery is
insufficient, execution of the plan stops and PS
is asked for a new plan that takes into account
the new situation. Dealing with fault conditions
on an as-needed basis simplifies the solution of
the fault protection problem.

It has to be noted that some critical parts of
the mission may still be so resource and time
constrained as to require optimization at the
level of individual real-time instructions. In
such cases high-level commanding allows
several alternative ways to address the problem
which are no worse than the traditional
approaches. For example, the plan may simply
include a single procedure for the entire critical

sequence and EXEC will i nitiate execution of
the canned sequence when encountering the
procedure. Another possibili ty is to make each
procedure correspond to an individual real-
time command and let PS generate the
sequence automatically. This may be as
complex as the traditional approach and may
not be effectively addressed by current
automated planning technology. For DS1,
however, we will concentrate on
demonstrating the modularity, flexibili ty and
robustness of high-level commanding, leaving
advances in optimality to future missions.

 4.  GENERATING PLANS FROM GOALS

Figure 1 describes how the DS1 on-board
planner implements high-level commanding.

Figure 1: High Level Commanding

A long-term plan covering the entire mission,
the  mission profile, is stored and maintained
on-board by the Mission Manager (MM). The
MM allows ground operations to modify
mission goals by editing the mission profile.
MM also has the responsibili ty to respond to
the EXEC’s requests for new plans. When this
happens MM selects a new set of goals from
the mission profile, combines it with initial
state information provided by the EXEC and
sends it to the PS. The time horizon covered
by PS is typically two weeks during cruise and
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a few day during encounter. When a plan is
ready, PS sends it to the EXEC. When EXEC
has almost completed execution of its current
plan, it sends a new request to MM; this also
happens when the EXEC is maintaining the
spacecraft in standby mode after the
occurrence of a major failure.

Plan representation

Both PS and MM represent plans using the
same kind of data structure, the plan database.
This is organized in several parallel timelines,
each comprised of a sequence of tokens. A
timeline describes the future evolution of a
single component of the spacecraft’s state
vector. The set of tokens active at a given
point in time represent the value of the state
vector at that time. Goals and procedures are
both represented as tokens. Each token
consists of a state variable descriptor
(specifying to which timeline the token
belongs) a type (a symbolic representation of
the goal or procedure and its parameters) a
start-time, an end-time and a duration.

For example, there may be one timeline
describing the state of the engine (warming up,
firing, or idle) and another describing the
spacecraft attitude (e.g., pointing to a target,
turning from target A to target B). Explicit
temporal constraint synchronize tokens on
separate timelines. For example, the spacecraft
attitude must be pointing to target B while the
engine is firing. Temporal constraints can also
enforce ordering of tokens on a single timeline
(e.g., the engine must warm up for at least an
hour before it fires). A plan involving these
two timelines is shown in Figure 2.

Timelines can also represent the state of
renewable resources such as battery state of
charge, non-renewable resources such as fuel,
and aggregate resources (i.e., resources that
can be allocated in parallel to several
consumers) such as electric power. Temporal
constraints synchronize resource allocation

tokens with the corresponding consumer
tokens.

Engine

Attitude

warming_up fire(B) idle

turn(A,B) point(B) turn(B,C)

contained by

meets meets

Figure 2: Example Timelines

The type of the resource tokens indicate the
amount requested and the modality of
consumption of the resource (e.g., constant,
linear depletion). Resource timelines also
include mechanisms to aggregate all parallel
requests, compare the cumulative requests
with availabili ty and prevent resource over-use
(e.g., drawing more power than is available, or
using more fuel than is allocated for the
mission phase).

The plan database can represent a plan at any
stage of partial completion. Incomplete plans
can have gaps between tokens on a timeline.
Also, an incomplete plan may include a request
for a constraint between tokens (see the
section on “The Planning Model”) that has not
yet been implemented. PS will analyze the state
of a database and add tokens and constraints
until the plan is complete.

Wherever possible, the plan database explicitly
represents decision variables and constraints
among them. The database uses constraint
propagation mechanisms to infer valid ranges
of values for variables (e.g., start or end times
of tokens) and to detect inconsistencies (e.g.,
contradictory temporal constraints between
tokens). This representation allows PS to
concentrate on establishing constraints instead



of selecting exact values for decision variables,
an approach that often avoids over-
commitment errors and therefore minimizes
backtracking on commitments made earlier.

More representational details on the plan
database can be found in [4].

The Planning Model

A valid plan must satisfy many constraints,
including ordering constraints (e.g., the
catalyst-bed heaters must warm up for ninety
minutes before using the reaction control
thrusters), synchronization constraints (e.g. the
antenna must be pointed at the Earth during
uplink,) safety constraints (e.g. do not point
the radiators within twenty degrees of the sun),
and resource constraints (e.g. the  MICAS
camera requires fifteen watts of power). These
are all expressed as temporal constraints, or
compatibilities, among tokens.

The planning model is a set of compatibili ties
that must be satisfied in every complete plan.
More formally, a compatibili ty is a temporal
relation that must hold  between a master
token and a target token whenever the master
token appears in the plan. If the master token
does not occur in the plan, the relation does
not need to be satisfied.

A master token can have several
compatibili ties. These are expressed as a
Boolean expression of compatibili ties called
compatibility trees, as shown Figure 3. The
tree in this figure says that the state in which
the MICAS camera is on must be preceded by
a state in which it is turning on, and followed
by one in which it is turning off. While the
camera is on, it consumes fifteen watts of
power.

( MICAS_Ready)

:compatibilities

(AND

   (met_by ( MICAS_Turning_On))

(meets  ( MICAS_Turning_Off))

(equal  (REQUEST (Power 15)))

Figure 3: A Compatibility Tree

Whenever a MICAS_Ready token appears in
the plan, it must be preceded by a
MICAS_Turning_On  token and followed by
a MICAS_Turning_Off  token, and the
power timeline is decremented by fifteen watts
for the duration of the token (and must not go
below zero available power for obvious
reasons).

Initial State

The input to the PS is an initial state and a set
of goals. The output is a plan that achieves the
goals when executed from the initial state. For
DS1 plans, the initial state of a plan is the first
token on each timeline.

The initial state of  the plan must match the
state of the spacecraft at the time the plan is
executed. Since it can take several hours to
generate a plan (the baseline is eight hours),
the initial state provided to the PS is
necessarily a prediction of the future spacecraft
state.

Under normal conditions, the prediction is
made by the EXEC based on projection of the
plan it is currently executing. Since the new
plan will start at the end of the current plan,
the projected initial state of the next plan is the
final state of the current plan. The PS also
needs to know at what time the new plan
should begin. This is also provided by the
EXEC based on the earliest and latest end
times of the current plan.

In off-nominal situations, there is no current
plan from which to project the initial state of



the next plan. This happens when a non-
recoverable failure occurs during execution of
the current plan, or when the ground wants to
upload a pre-defined (or “canned”) plan.

In the case of a canned plan, the ground cannot
easily predict the state of the spacecraft at the
time the plan will be executed. The solution is
to put the spacecraft into a known state in
which it can persist until the plan is executed.
This state is the initial state of the plan.

In the case of non-locally recoverable failures,
the rest of the plan cannot be executed. In
addition, the EXEC may have had to take
actions not in the plan in order to get the
spacecraft into a safe configuration following
the failure. So the current plan cannot be used
to predict the future state of the spacecraft.
Fortunately, the safe configuration is a stable
one. The exec uses this configuration as the
initial state, and persists in this state until the
new plan is ready.

If the plan was aborted due to a failed or
degraded device, the failure must be noted as
part of the initial state. For example, the IPS
engine may be non-operational, or perhaps the
MICAS camera is stuck in the on state.

In the case of a stuck device, the token
corresponding to the stuck state is asserted on
the appropriate timeline over the entire
planning horizon. This prevents the PS from
generating a plan that requires the device to
change states (the plan would fail). A non-
functional device is declared unusable by
placing a not_used  token at the start of the
device’s health timeline. The reason for saying
the device is not usable rather than non-
functional is so that the health of the device
can be separated from the decision to use it.

For example, an intermittently faili ng device
may be declared unusable by the EXEC or the
ground. The EXEC and MIR can continue to

track the device’s health while the EXEC, PS
and possibly the ground reason about whether
to use it. Since the PS only cares about
usabili ty, the tokens on the “health” timelines
are available  and not_used .

A device can be available but degraded. If the
PS needs to reason about the degraded modes,
they are specified as arguments to the
available token. For example, the battery
capacity can be degraded even though the
battery is still functional. The argument of the
status token indicates the maximum charge
level in amp hours (e.g., available (24),
available (20)).

Mission Manager

Mission operations commands the spacecraft
through a plan database called the mission
profile. On board the mission profile is
maintained by a dedicated process, the Mission
Manager (MM). DS1 will be launched with a
mission profile for the entire mission. In
principle this will allow the spacecraft to
achieve the nominal mission without any
additional uplink. In practice, MM provides
mechanisms for ground operations to edit the
mission profile and modify the mission goals
while in flight.

The mission profile is an incomplete plan with
its tokens representing what needs to be
achieved by the mission. Unlike PS, MM does
not attempt to fill i n gaps in the mission
profile. Instead, when requested, MM
determines the length of the next planning
horizon and selects the tokens that fall in the
horizon and need to be sent to PS.
Figure 4 shows a representative DS1 mission
profile. The Waypoints timeline contains a
series of waypoint (...) tokens, each
representing a boundary point for a scheduling
horizon. MM determines the length of the
scheduling horizon by selecting the next
waypoint token such that there is enough



time for PS to produce a plan between the
current time and the time of occurrence of the
waypoint .

Waypoint

Comm

Navigate

scheduled_comm(cfg),<*any*>

Navigate(…) Navigate(…)

<*any*>

Waypoint(fuel, battery, etc)

<*any*>

Figure 4: Goal Timelines

Waypoint  tokens also provide a set of
check-point conditions on resource usage that
the plan must satisfy. These check-point
conditions are important to guarantee a well
balanced achievement of all mission goals.
Without them, PS could be free to use a
greedy approach and consume all available
resources to maximize goal achievement within
a few scheduling horizons. Since the PS’
temporal perspective is limited, it is the
mission designers’ responsibili ty to provide
long term perspective through waypoint s.

The Comm timeline determines when the
spacecraft is scheduled for communication
with ground through a DSN pass. This is done
by placing a scheduled_comm  token on the
timeline, with start and end times
corresponding to those of the pass. The
argument of the token indicates the
telecommunication configuration that the
ground system is expecting. The Comm
timeline is incomplete since it contains dummy
<*any-value*> tokens within the goal tokens.
This means that PS has the freedom to fill i n
the gap with whatever default procedures are

more convenient according to the domain
model.

Other goal timelines are specified similarly. For
example, the navigation  timeline has
navigate  tokens that indicate how often the
on-board navigator should ask the spacecraft
to take images of the star field.

Although the mission profile is designed to
express the entire nominal mission through a
few timelines of goal tokens, sometimes
ground may want to force the execution of
special maneuvers. These can only be
expressed through special networks of
synchronized procedures. For this reason the
mission profile includes also all timelines that
usually contain procedure tokens expanded by
PS. Ground has equal access to goal and
procedure timelines and can therefore include
the needed tokens in the mission profile. It is
important to notice that since MM and PS
make no a-priory distinction between goals
and procedure tokens, ground can describe
maneuvers only in part leaving to PS the
responsibili ty to expand other procedures that
may be needed to adapt to the actual execution
conditions. These conditions are unknown to
ground at the time of specification of the
special maneuver.

On-board Goals

In addition to the goals in the mission profile,
goals also come from on-board systems, such
as the navigator. This allows the spacecraft to
modify its goals, and therefore its behavior,
based on new knowledge that the ground may
not yet have. This capabili ty is particularly
important since the spacecraft has only
infrequent contact with the ground, and may
have to act on the new knowledge before the
next DSN pass.

This is especially true of navigation goals. At
the beginning of each planning horizon, the PS
asks the navigator what images should be



taken and what course corrections are
necessary based on images and execution data
from the previous horizon. The PS then
generates a plan that achieves these goals.

The goals must be generated on-board, since
waiting for the next DSN pass to downlink the
images and execution data, and then waiting
for the ground to uplink navigation goals is not
feasible. This is especially true near encounter,
where several course corrections are made
within a couple days, and some corrections are
only a few hours apart.

Goals generated on-board are treated the same
way as goals in the mission profile. However,
they do raise some interesting issues. In
particular, on-board goals may conflict with
goals in the mission profile. If the goals are
mutually exclusive then there is no plan that
will satisfy all of the goals.

DS1 addresses this problem in two ways. One
is to prioritize the goals (see Section 5). The
lower priority goals can be ignored, removing
the conflict. The navigator’s image goals have
the lowest priority since the navigator can still
function adequately if it misses an occasional
image. The second approach is to ensure that
the goals are sufficiently flexible that there is
always some way to satisfy all of them.

Planning Algorithm

The planner essentially searches in the space of
incomplete or partial plans [5] with additional
temporal reasoning mechanisms [6 and 4]. As
with most causal planners, the PS begins with
a partial plan and attempts to expand it into a
complete plan. The plan is complete when it
satisfies all of the compatibili ties in the plan
model and all of the timelines have final tokens
that end at, or after, the end of the plan
horizon.

The unsatisfied compatibili ties are also referred
to as open compatibili ties. An open

compatibili ty is a temporal relation that must
exist between a master token that is already in
the plan and a target token that may or may
not be in the plan. For example, the
compatibili ty A meets B  is open if A is in
the plan but B is not, or if both A and B are in
the plan but the relation A meets B  is not
explicitly enforced.

The PS can satisfy an open compatibili ty in one
of three ways. It can add the target token to
the plan in such a way that it satisfies the
temporal relation; it can adjust the start or end
time of  either the target or master token in
order to satisfy the relation; or, it can decide
that the relation will be satisfied by a token in
the next planning horizon, and can therefore be
ignored. These options are called adding,
connecting, and deferring, respectively.
Deferred compatibili ties are maintained in the
plan and carried forward to the next planning
horizon as part of the initial state.

This basic loop is summarized in Figure 5,
below. Each decision can be made non-
deterministically, though in practice the
decisions are guided by heuristics. If the wrong
decisions is made, the PS will eventually reach
a dead end and backtrack. It then tries one of
the other decisions.

 5.  GOAL PRIORITIZATION

One of the most common problems when
developing a plan is the resolution of
spacecraft resource over-subscriptions. The
problem stems from the fact that independent
sources (e.g., the science team, the navigation
team) compete for the use of the limited on-

Figure 5: Planning Loop

While plan has open compatibilities:
1. pick an open compatibility
2. select and apply resolution strategy
3. if no resolution possible, backtrack.



board resources. The overall mission goals
depend on achieving a careful balance between
these potentially conflicting goals. When a
compromise is possible, the PS must
appropriately distribute the use of available
resources. When a compromise is not possible,
then the PS must select some of the lowest
priority goals for postponement or outright
rejection.

The DS1 PS system can perform on-board all
of the functions described above. Goals that
can be rejected are represented in the mission
profile as free tokens. These are tokens that
have not yet been inserted onto a timeline.
Besides expanding the supporting procedure,
PS has to first decide if the goal token will be
inserted in the appropriate timeline. PS can
interleave this decision in the backtracking
search procedure described in Section 4 and
can therefore explore several goal rejection
schemes before returning a final plan. In
practice, however, PS does cannot explore all
possible combination of free token
achievements but instead follows a statically
assigned prioritization scheme (e.g.,  science
goals have highest priority, followed by
navigation goals and then by telemetry goals).
In the following section we describe examples
of goal prioritization due to failures that make
certain resources unusable by the PS.

 Goal prioritization schemes make
commanding of the spacecraft easier and more
robust. It is easier because goal achievement
decisions can be postponed to reflect the actual
conditions of execution of the plan, making
unnecessary extensive contingency analyses in
advance; it is more robust because even if
ground specifies goals that cannot all be
achieved together, the spacecraft will not give
up and continue operations by executing a
“good enough” commanding sequence.

 6.  FAILURE RESPONSE

The RA provides two levels of failure
responses—an immediate reactive response,
and a longer term deliberative response. This
is typical of many autonomy architectures
(e.g., Soar [7], Guardian [8]). The reactive
behavior provides for fast, real-time responses
to failures, such as a stuck thruster or rapidly
draining battery, that could damage the
spacecraft if not dealt with immediately. On
DS1, the reactive behaviors are provided by
the EXEC and MIR. Once the spacecraft is
stabili zed, the deliberative behavior assesses
the impact of the failures on the  remaining
goals, and determines how to proceed in light
of the failures. The deliberative responses are
provided by the planner.

This two level response results in simpler and
more robust plans. The plans are simpler since
they can address only the nominal case and
trust that failures will be handled properly as
they arise. Failures are either resolved by the
reactive layer and allow the plan to continue,
or cannot be resolved, in which case the plan
breaks and the PS generates another nominal
plan based on the new spacecraft state.

The plans are also more robust. This is partly
due to the failure response mechanism, partly
due to the hierarchical nature of the RA, and
partly due to the plan representation. The
hierarchy allows the tokens in the plan to
correspond to fairly abstract procedures, and
the plan representation allows tokens to have
flexible start and end times. This allows the
EXEC considerable latitude in how it executes
tokens. It can respond to failures by retrying
commands or trying alternate approaches. The
extra time needed to respond to the failures is
absorbed by the flexibili ty in the token’s start
and end times.

In the following, we quickly outline the
significance of plans, both in the reactive and
in the deliberative failure responses.



The Reactive Layer

As mentioned above, the reactive failure
responses are handled completely by EXEC
and MIR on a token by token basis. During
execution, the conditions of validity for each
token must be held true for the entire duration
of the token. When EXEC executes the
procedure corresponding to a token in the
plan, it relies on MIR inferring the state of the
spacecraft devices based on their telemetry and
responses to EXEC commands. If the inferred
state is inconsistent with the commanded state,
MIR suggests recovery actions to the EXEC.
The recovery action must guarantee that the
conditions of validity for the token continue to
hold.

For example, the MICAS_Turning_On
token involves turning on heaters and power
switches, taking some calibration images, etc.
If the MICAS power switch does not transition
to the on state as commanded, then the MIR
may suggest EXEC to re-send the command,
and if that fails, to reset the MICAS camera.

Besides asserting validity conditions, the plan
also allocates resources for each token within
which recovery must take place. If this
resource allocation is exceeded the token and
the plan are declared “broken”. For example,
the duration associated to each token type in
the PS model typically has a lower bound (the
time needed to execute the token if no failure
occurs) and an upper bound (the time needed
to execute the maximum allowed number of
recovery actions).  As a result of the total
number of tokens and the topology of the plan,
PS may “eat up” some of the duration
flexibili ty, possibly allocating only enough
token duration to execute the nominal
procedure without recovery. It is also
important to notice that the flexible nature of
plans allows slack in a plan to be transferred
“upstream” between connected tokens. So if
an early token succeeds without recovery, the
token’s unused duration flexibili ty is made

available to future tokens via constraint
propagation.

The Deliberative Layer—Replanning

If the plan breaks, the EXEC gets the
spacecraft into a safe configuration and
immediately asks the PS for a new plan. The
PS assesses the impact of the failure on the
mission goals and attempts to develop a new
plan that will achieve them from the current
spacecraft state. This is called replanning.
There is no difference between planning and
replanning. The same algorithm is used in both
cases. Replanning refers to planning after a
plan break whereas planning refers to the
nominal cycle.

When a replan occurs, the PS must assess the
impact of degraded or unusable devices on the
mission goals.3  For goals generated on-board,
the goal generators examine the relevant
spacecraft state. If the goals are patently
unachievable, no goal is generated. For
example, if the IPS engine is declared
unusable, then the navigator will not return
goals requiring use of the IPS (e.g., IPS
thrusting goals). If the MICAS camera is
unavailable, then the same applies to
navigation image goals.

After the obviously unachievable on-board
goals have been removed by the goal
generators themselves, the impact of the
failures on the remaining goals is assessed by
the planning model. This assessment occurs as
a normal part of the planning search.

The planning algorithm attempts to resolve all
the open compatibili ties in the plan. If one
approach fails, it tries alternates until i t either

                                               

3 The same assessment is also necessary in normal
planning conditions. However, the devices are fully
functional, and the resources are at their expected
levels, so there is no impact on the goals.



generates a plan that satisfies all the
compatibilities, or fails.

Knowledge about the impact of the spacecraft
state on mission goals is expressed in the
compatibili ties of the plan model. Each of the
goals is represented as a token, and these
tokens have compatibili ties with tokens on
timelines representing device health and
spacecraft resources. If the resources are not
available, or the device is not sufficiently
functional, then the planner will not be able to
satisfy the compatibili ties on the goal token.  If
there is some other way to achieve the goal
compatibili ties that does not require these
resources, then the planner will find it and
generate a plan accordingly.

If the planner cannot find any way to satisfy
the compatibili ties, then it will try to reject
some of the goals based on a goal
prioritization scheme. If it still cannot find a
plan, then the spacecraft remains in standby
mode until the ground can intervene during the
next DSN pass.

Critical Plans

For critical events such as encounter, there is
no time to recover even at the reactive level,
let alone time to recover by replanning. In the
DS1 encounter, the MICAS images are spaced
so tightly together that an attempt to recover
from a failure while taking one image could
result in losing several other images. It is better
to simply move on to the next image and hope
the fault clears itself.

In traditional missions, these so-called critical
sequences are handled by switching to an
alternate fault control mode in which some
faults are ignored but critical faults, such as
sudden loss of battery power, are still handled.

In DS1, critical sequences are handled within
the existing fault control mechanism. The
semantics of a few carefully selected tokens

are changed such that there is no way they can
fail. Specifically, the semantics of
take_image  are changed to, “attempt to
take an image.” This token cannot fail, so no
recovery actions are needed.

This approach must be used with great
caution. All the other tokens in the plan must
be consistent with all possible outcomes of the
“critical” token. For example, after encounter
there are tokens that write the contents of the
MICAS image buffer to non-volatile storage.
These tokens must not require that the buffer
have images in it, since the take_image
token does not guarantee that an image will
actually be taken. The buffer may well be
empty.

 7.  FORTUITOUS EVENTS

Re-assessments of mission goal achievement
by replanning can be also fruitful when
spacecraft capabili ties are unexpectedly
restored; or when the spacecraft performs
better than expected; or when external
fortuitous events open the possibili ty of
achieving high-payoff mission goals. From the
DS1 planner’s perspective, these situations are
covered by the basic scheme described in the
previous sections. The occurrence of
advantageous events needs to be detected by
EXEC and communicated to the PS in the
initial state. Other than that, PS will perform
the same search procedure that already handles
the nominal and failure scenarios.

As an example of an unexpectedly restored
resource, consider a situation in which IPS has
malfunctioned and EXEC has broken the plan,
made IPS unavailable to the PS, and inserted
into the next telemetry downlink a request for
ground to assess the situation. Assume that
during the next DSN pass ground is able to run
some tests and decides that the malfunction
was a fluke and IPS operations can resume.
EXEC can now break the plan currently in
execution (which did not include the



achievement of “SEP thrust accumulation”
goals) and immediately re-invoke the PS with
an initial state that includes the fact that IPS is
now available.

Replanning also allows the spacecraft to take
advantage of better-than-expected resource
consumption. Consider a two-week plan that
allocates three kilograms of fuel for each
week. Assume that after the first week, the
spacecraft has only utili zed two kilograms (the
PS may have been conservative in its
estimates). If EXEC can independently track
actual resource consumption, it can notice the
advantageous situation, break the current plan
and request a new plan. The additional fuel
could be used to achieve additional low-
priority goals that had to be rejected in the
original plan. This capabili ty will not be
explored for DS1 since EXEC will not
independently track resource consumption.

Finally, consider a situation in which a
spacecraft notices volcanic eruptions on the
basis of pictures taken in the early stages of a
planetary flyby. This event would be dramatic
enough to grant a complete change of the
science schedule for the rest of the flyby.
Although this capabili ty is not being explored
for DS1, it can easily be handled in the current
architecture. The science unit would detect the
eruption and request an immediate replan.
During the replan, PS asks all the on-board
units for their goals. Among these are the new
science image goals from the science unit. The
PS can now consider the priorities of the new
goals along with the other on-board goals and
mission goals, and decide which ones it will
actually achieve.

 8.  CONCLUSIONS

On-board planning is a crucial element of
spacecraft autonomy. It can reduce mission
costs and improve mission quality by allowing
high-level commanding, enabling achievement
of  mission goals in the presence of failures

without ground intervention, and taking
advantage of fortuitous events.

The DS1 mission marks the first on-board
planner to fly on a NASA spacecraft. The
validation of this technology will open the way
for future autonomous missions.
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